Featured

[Paper published] Check out our new machine/deep learning paper

New machine/deep learning paper led by Liping: Visually-Enabled Active Deep Learning for (Geo) Text and Image Classification: A Review https://t.co/kSF3O71tbD

Through the synthesis of multiple rapidly developing research areas, this systematic review is relevant to multiple research domains, including but not limited to GIScience, computer science, data science, information science, visual analytics, information visualization, image analysis, and computational linguistics, as well as any domains that need to leverage machine learning and deep learning .

 

Featured

Install Keras with GPU TensorFlow as backend on Ubuntu 16.04

This post introduces how to install Keras with TensorFlow as backend on Ubuntu Server 16.04 LTS with CUDA 8 and a NVIDIA TITAN X (Pascal) GPU, but it should work for Ubuntu Desktop 16.04 LTS.

We gratefully acknowledge the support of NVIDIA Corporation with awarding one Titan X Pascal GPU used for our machine learning and deep learning based research.

Keras is a great choice to learn machine learning and deep learning. Keras has easy syntax and can use Google TensorFlow or Microsoft CNTK or Theano as its backend.  Keras is simply a wrapper around more complex numerical computation engines such as TensorFlow and Theano.

Keras abstracts away much of the complexity of building a deep neural network, leaving us with a very simple, nice, and easy to use interface to rapidly build, test, and deploy deep learning architectures.

TensorFlow is extremely flexible, allowing you to deploy network computation to multiple CPUs, GPUs, servers, or even mobile systems without having to change a single line of code.

This makes TensorFlow an excellent choice for training distributed deep learning networks in an architecture agnostic way.

Now Let’s start on the installation of Keras with TensorFlow as its backend.

1: Setup Python virtual environment

Check my post about more details about how to setup python virtual environment and why it is better to install python libraries in Python virtual environment.

  • Install pip and Virtualenv for python and python 3:
$ sudo apt-get update
$ sudo apt-get install openjdk-8-jdk git python-dev python3-dev python-numpy python3-numpy build-essential python-pip python3-pip python-virtualenv swig python-wheel libcurl3-dev
  • Create a Virtualenv environment in the directory for python and python 3:
#for python 2
virtualenv --system-site-packages -p python ~/keras-tf-venv

# for python 3 
virtualenv --system-site-packages -p python3 ~/keras-tf-venv3

(Note: To delete a virtual environment, just delete its folder.  For example, In our cases, it would be rm -rf keras-tf-venv or rm -rf keras-tf-venv3.)

2: Update & Install NVIDIA Drivers (skip this if you do not need to TensorFlow GPU version)

Check another post I wrote(steps 1-4 in that post) for detailed instructions about how to update and install NVIDIA Drive and CUDA 8.0 and cuDNN for the requirements of GPU TensorFlow installation.

Notes: If you have old version of NVIDIA driver installed used the following to remove it first before installation of new driver.

Step 1: Remove older version of NVIDIA
sudo apt-get purge nvidia*

Step 2: Reboot the system

test whesther it is removed

$ sudo nvidia-smi 
$ sudo: nvidia-smi: command not found  # this means the old driver was uninstalled.

(Note: If you have older version of CUDA and cuDNN installed, check the post for uninstallation.  How to uninstall CUDA Toolkit and cuDNN under Linux? (02/16/2017) (pdf). Actually to uninstall (older version) of CUDA, it tells you how to uninstall it when you install, see the Install cuda 8.0 below.)

(Note: I tried to install the latest Nvidia drive, latest cuda and latest cudnn (i.e., v6.0), but it did not work for me when I installed TensorFlow. After a few testing, I found when I install Nvidia drive 375.82,  cuda_8.0.61_375.26_linux.run, cudnn-8.0-linux-x64-v5.1.tgz. it works.)

Install cuda 8.0:

Toolkit: Installed in /usr/local/cuda-8.0
Samples: Installed in /home/liping, but missing recommended libraries

Please make sure that
– PATH includes /usr/local/cuda-8.0/bin
– LD_LIBRARY_PATH includes /usr/local/cuda-8.0/lib64, or, add /usr/local/cuda-8.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-8.0/bin

Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-8.0/doc/pdf for detailed information on setting up CUDA.

***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
sudo <CudaInstaller>.run -silent -driver

Logfile is /tmp/cuda_install_3813.log

 

3: Install TensorFlow

Before installing TensorFlow and Keras, be sure to activate your python virtual environment first.

# for python 2
$ source ~/keras-tf-venv/bin/activate  # If using bash
(keras-tf-venv)$  # Your prompt should change

# for python 3
$ source ~/keras-tf-venv3/bin/activate  # If using bash
(keras-tf-venv3)$  # Your prompt should change

 (keras-tf-venv)$ pip install --upgrade tensorflow   # Python 2.7; CPU support (no GPU support)
 (keras-tf-venv3)$ pip3 install --upgrade tensorflow   # Python 3.n; CPU support (no GPU support)
 (keras-tf-venv)$ pip install --upgrade tensorflow-gpu  # Python 2.7;  GPU support
 (keras-tf-venv3)$ pip3 install --upgrade tensorflow-gpu # Python 3.n; GPU support

Note: If the commands for installing TensorFlow given above failed (typically because you invoked a pip version lower than 8.1), install TensorFlow in the active virtualenv environment by issuing a command of the following format:

 (keras-tf-venv)$ pip install --upgrade TF_PYTHON_URL   # Python 2.7
 (keras-tf-venv3)$ pip3 install --upgrade TF_PYTHON_URL  # Python 3.N

where TF_PYTHON_URL identifies the URL of the TensorFlow Python package. The appropriate value of TF_PYTHON_URLdepends on the operating system, Python version, and GPU support. Find the appropriate value for TF_PYTHON_URL for your system here. For example, if you are installing TensorFlow for Linux, Python 2.7, and CPU-only support, issue the following command to install TensorFlow in the active virtualenv environment: (see below for examples. Note that check here to get the latest version for your system.)

#for python 2.7 -- CPU only
(keras-tf-venv)$pip install --upgrade \ https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.1.0-cp27-none-linux_x86_64.whl

#for python 2.7 -- GPU support
(keras-tf-venv)$pip install --upgrade \ https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.1.0-cp27-none-linux_x86_64.whl

# for python 3.5 -- CPU only
(keras-tf-venv3)$ pip3 install --upgrade \
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.1.0-cp35-cp35m-linux_x86_64.whl

# for python 3.5 -- GPU support
(keras-tf-venv3)$ pip3 install --upgrade \ 
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.1.0-cp35-cp35m-linux_x86_64.whl
  • Validate your TensorFlow installation. (as I just installed GPU tensorflow, so if you install CPU TensorFlow, the output might be slightly different.)

#For Python 2.7

(keras-tf-venv) :~$ python
Python 2.7.12 (default, Nov 19 2016, 06:48:10) 
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
2017-08-01 14:28:31.257054: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-01 14:28:31.257090: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-01 14:28:31.257103: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-08-01 14:28:31.257114: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-01 14:28:31.257128: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-08-01 14:28:32.253475: I tensorflow/core/common_runtime/gpu/gpu_device.cc:940] Found device 0 with properties: 
name: TITAN X (Pascal)
major: 6 minor: 1 memoryClockRate (GHz) 1.531
pciBusID 0000:03:00.0
Total memory: 11.90GiB
Free memory: 11.75GiB
2017-08-01 14:28:32.253512: I tensorflow/core/common_runtime/gpu/gpu_device.cc:961] DMA: 0 
2017-08-01 14:28:32.253519: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0: Y 
2017-08-01 14:28:32.253533: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: TITAN X (Pascal), pci bus id: 0000:03:00.0)
>>> print(sess.run(hello))
Hello, TensorFlow!
>>> exit()
(keras-tf-venv) :~$ 

#for python 3

(keras-tf-venv3) :~$ python3
Python 3.5.2 (default, Nov 17 2016, 17:05:23) 
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
2017-08-01 13:54:30.458376: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-01 13:54:30.458413: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-01 13:54:30.458425: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-08-01 13:54:30.458436: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-01 13:54:30.458448: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-08-01 13:54:31.420661: I tensorflow/core/common_runtime/gpu/gpu_device.cc:940] Found device 0 with properties: 
name: TITAN X (Pascal)
major: 6 minor: 1 memoryClockRate (GHz) 1.531
pciBusID 0000:03:00.0
Total memory: 11.90GiB
Free memory: 11.75GiB
2017-08-01 13:54:31.420692: I tensorflow/core/common_runtime/gpu/gpu_device.cc:961] DMA: 0 
2017-08-01 13:54:31.420699: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0: Y 
2017-08-01 13:54:31.420712: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: TITAN X (Pascal), pci bus id: 0000:03:00.0)
>>> print(sess.run(hello))
b'Hello, TensorFlow!'
>>> exit() 
(keras-tf-venv3) :~$

If you see the output as below, it indicates your TensorFlow was installed correctly.

Hello, TensorFlow!

3: Install Keras

(Note: Be sure that you activated your python virtual environment before you install Keras.)

Installing Keras is even easier than installing TensorFlow.

First, let’s install a few dependencies:

#for python 2
$ pip install numpy scipy
$ pip install scikit-learn
$ pip install pillow
$ pip install h5py

#for python 3
$ pip3 install numpy scipy
$ pip3 install scikit-learn
$ pip3 install pillow
$ pip3 install h5py

4: Verify that your keras.json file is configured correctly

Let’s now check the contents of our keras.json  configuration file. You can find this file at ~/.keras/keras.json .

use nano to open and edit the file.

$ nano ~/.keras/keras.json

The default values should be something like this:

{
 "epsilon": 1e-07,
 "backend": "tensorflow",
 "floatx": "float32",
 "image_data_format": "channels_last"
}

Can’t find your keras.json file?

On most systems the keras.json  file (and associated subdirectories) will not be created until you open up a Python shell and directly import the keras  package itself.

If you find that the ~/.keras/keras.json  file does not exist on your system, simply open up a shell, (optionally) access your Python virtual environment (if you are using virtual environments), and then import Keras:

#for python 2
$ python
>>> import keras
>>> quit()

#for python 3
$ python3
>>> import keras
>>> quit()

From there, you should see that your keras.json  file now exists on your local disk.

If you see any errors when importing keras  go back to the top of step 4 and ensure your keras.json  configuration file has been properly updated.

5: Test Keras + TensorFlow installation

To verify that Keras + TensorFlow have been installed, simply access the keras_tf  environment using the workon  command, open up a Python shell, and import keras :

Specifically, you can see the text Using TensorFlow backend  display when importing Keras — this successfully demonstrates that Keras has been installed with the TensorFlow backend.

Note: each time you would like to use Keras, you need to activate the virtual environment into which it installed, and when you are done using Keras, deactivate the environment.

# for python 2
(keras-tf-venv)$ deactivate
$  # Your prompt should change back

#for python 3
(keras-tf-venv3)$ deactivate
$  # Your prompt should change back

Note: To delete a virtual environment, just delete its folder. (In this case, it would be rm -rf keras-tf-venv or rm -rf keras-tf-venv3.)

References:

Installing Keras with TensorFlow backend (by on November 14, 2016 in Deep Learning, Libraries, Tutorials)

Installing keras makes tensorflow can’t find GPU

Installing Nvidia, Cuda, CuDNN, TensorFlow and Keras

https://www.tensorflow.org/install/install_linux

Keras as a simplified interface to TensorFlow: tutorial

I: Calling Keras layers on TensorFlow tensors

II: Using Keras models with TensorFlow

III: Multi-GPU and distributed training

IV: Exporting a model with TensorFlow-serving

Featured

Install Node.js on Ubuntu 16.04 LTS

This post provides instructions about how to install Node.js on Ubuntu 16.04 LTS. See this post for Node.js resources. (Node.js Offical Github Repo.)

NPM (Node Package Manager) is the default package manager for the JavaScript runtime environment Node.js. NPM hosts thousands of free node packages. In general, NPM is installed on your computer after you install Node.js.

There are several ways to install Node.js on Ubuntu:

  • Method #1 (our choice in this tutorial): Install Node.js with Node Version Manager (NVM) to manage multiple active Node.js versions

Using nvm, we can install multiple, self-contained versions of Node.js, which will allow us to control our environment, and get access to the newest versions of Node.js, but will also allow us to keep previous releases that our applications may depend on. (nvm is just like Virtualenv in Python, if you are familiar with it, which allows us to install multiple version of the same Python library into “virtual folders” by pip.)

This is the method we will cover later in this tutorial.

  • Method #2: Install the bundled Distro-Stable Version Node.js (version 4.2.6) – it is very simple to install, just one or two commands.

Ubuntu 16.04 contains a version of Node.js in its default repositories that can be used to easily provide a consistent experience across multiple systems. At the time of writing, the version in the repositories is version 4.2.6. This will not be the latest version, but it should be quite stable, and should be sufficient for quick experimentation with the language.

This tutorial picked the Node Version Manager (nvm) based method, because it is much more flexible.

See below for the step by step instructions. (Check out the reading list below if you need the install instructions for other methods listed above.)

Step 0: (Before we get started) Remove old Node package to avoid conflicts

Open a terminal (Ctrl + Alt + T), and type the following command. 

$ dpkg --get-selections | grep node

# If it says install in the right column, Node is on your system:
#ax25-node                                       install

#node                                            install

Step 1: Install prerequisite packages

We’ll need to get the software packages from our Ubuntu repositories that will allow us to build source packages. The nvm script will leverage these tools to build the necessary components.

First, we need to make sure we have a C++ compiler. Open a terminal window (Ctrl + Alt + T) and install the build-essential and libssl-dev packages. By default, Ubuntu does not come with these tools — but they can be installed by the following commands.

$ sudo apt-get update

$ sudo apt-get install build-essential libssl-dev

Step 2: Install nvm

Once the prerequisite packages are installed, we can install and update NVM(Node Version Manager) using cURL. (Note: to get the latest installation version link, on the page scroll down to “Install script”.) 

$ curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.2/install.sh | bash

Inspect the installation script with nano:

$ nano install_nvm.sh

#Note that we DO NOT need to add anything in the opened nano text editor window. We just need to create the .sh file. 
# Use Ctrl+O to save the file, and then hit Enter, and then Ctrl +X to close the file.

Run the script with bash (Note that run the following command in your terminal):

$ bash install_nvm.sh

It will install the software into a sub-directory under our home directory at ~/.nvm. It will also add some necessary lines to our ~/.profile file in order to use it.

To have access to the nvm functionality, we need to source the ~/.profile file so that our current session knows about the changes:

$ source ~/.profile

Now that we have nvm installed, we can install isolated Node.js versions.

Step 3: Install  Node.js

The following command will tell us which versions of Node.js are available for us to install:

$ nvm ls-remote
Output
...
    v6.10.3 (Latest LTS: Boron)
 v7.0.0
 v7.1.0
 v7.2.0
 v7.2.1
 v7.3.0
 v7.4.0
 v7.5.0
 v7.6.0
 v7.7.0
 v7.7.1
 v7.7.2
 v7.7.3
 v7.7.4
 v7.8.0
 v7.9.0
 v7.10.0

The newest version when I write this post is v7.10.0. We can install it by the following command:

$ nvm install 7.10.0

By default, nvm will switch to use the most recently installed version. We can explicitly tell nvm to use the version we just installed by the following command:

$ nvm use 7.10.0

When we install Node.js using nvm, the executable is called node (NOT nodejs that you may see in other tutorials). We can check the currently used Node and npm version by the following commands:

$ node -v  
# OR 
$ node --version

# Output
# v7.10.0


$ npm -v
# OR 
$ npm --version

# output
# 4.2.0

Step 4: using nvm to manage different versions of installed Node.js 

If you have multiple Node.js versions, you can see what are installed by the following command:

$ nvm ls

To set a default Node.js version to be used in any new shell, use the alias default command

$ nvm alias default 7.10.0

# This version will be automatically selected when a new session spawns. You can also reference it by the alias like this:

$ nvm use default

To learn more  about the options available to use with nvm, run the following command in your terminal:

$ nvm help

Step 5: using npm to install Node.js modules

Each version of Node.js will keep track of its own packages and has npm available to manage these.

We can use npm to install packages to the Node.js project’s ./node_modules directory by using the normal format. For example, for the express module:

$ npm install express

If you’d like to install it globally (i.e., making it available to other projects using the same Node.js version), you can add the -g flag:

$ npm install -g express

This will install the package in:

~/.nvm/node_version/lib/node_modules/package_name

Note that installing globally will allow us to run the commands from the command line, but we will have to link the package within a project in order to use it in that project:

$ npm link express

 

References and further reading list:

This tutorial covers two methods:

Method #1: Install the bundled distro specif Node.js version 4.2.6

Method #2: Install the latest version of Node.js version 6.x or 7.x

This post is very good — it covers the following ways to install Node.js:

Installing using the Official Repository
Installing using the Github Source Code Clone
Installing using Node Version Manager (NVM)

It covers How to Install Multiple Nodejs version with NVM and also covers how to remove Node.js 

This tutorial covers:

  • How To Install the Distro-Stable Version for Ubuntu
  • How To Install Using a PPA
  • How To Install Using NVM

there are a quite a few ways to get up and running with Node.js on your Ubuntu 16.04 server. Your circumstances will dictate which of the above methods is the best idea for your circumstance. While the packaged version in Ubuntu’s repository is the easiest, the nvm method is definitely much more flexible.

This is a pretty good tutorial. It covers 4 Ways to Install Node.js on Ubuntu. There are several ways to do this, but The author of this post recommended  Option 1: Node Version Manager (nvm). Here is the full list of options:

 

 

Tips about Jupyter Notebook

This post provides some tips about Jupyter Notebook.

  • When you open a pdf file in a browser via your running Jupyter Notebook.

You may encounter some error similar to this “Error! (file) is not UTF-8 encoded”,

the solution:

check the address in your browser, for example, for the following case,

http://localhost:8000/edit/confusionmatrix.pdf

if I change the edit in the url address given above to  view

http://localhost:8000/view/confusionmatrix.pdf

You will see your beautiful fig or document in pdf format.

  • Another similar situation:

When you open a html file in your browser via your running Jupyter Notebook, and you would like to edit the html file, instead of seeing its display,

the solution:

change view to edit in the url address of the file, see the following for an example, then you should be able to edit your html file.

http://localhost:8000/view/index.html 

to

http://localhost:8000/edit/index.html

Happy Jupyter Notebooking!

Dynamic GPU usage monitoring (CUDA)

To dynamically  monitor NVIDIA GPU usage, here I introduce two methods:

method 1: use nvidia-smi

in your terminal, issue the following command:

$ watch -n 1 nvidia-smi

It will continually update the gpu usage info (every second, you can change the 1 to 2 or the time interval you want the usage info to be updated).

method 2: use the open source monitoring program glances with its GPU monitoring plugin

in your terminal, issue the following command to install glances with its GPU monitoring plugin

$ sudo pip install glances[gpu]

to launch it, in your terminal, issue the following command:

 $ sudo glances

Then you should see your GPU usage etc. It also monitors the CPU, disk IO, disk space, network, and a few other things

For more commonly used Linux commands, check my other posts at here  and here .

Resources about Azure Batch AI

This post provides some resources about Microsoft Auzre Batch AI.

Introduction:

Batch AI is a managed service that enables data scientists and AI researchers to train AI and other machine learning models on clusters of Azure virtual machines, including VMs with GPU support. You describe the requirements of your job, where to find the inputs and store the outputs, and Batch AI handles the rest.

Hands-on tutorials:

Videos:

 

Run Jupyter notebook from terminal with tmux

This post will walk you through how to run a Jupyter notebook script from terminal with tmux (check here for my post about tmux usage).

When you are running Jupyter on a remote server or on cluster/ cloud resources, there are situations where you would like the Jupyter on the remote server or cluster continue running without termination when you shut down your laptop or desktop that you used to access the remote server. tmux will help with this.

In this post, we cover how to let your jupyter notebook running on a remote server continue running without termination via tmux.

Step 1: connect to your remote server with port forwarding

check the Step 5-2 in my post here about setting up Jupyter notebook for how to access your remote server with port forwarding, if you are not familiar with it.

Step 2: install tmux 

 check here for my post about tmux installation and usage

Step 3: install runipy  python package

Check here for runipy installation and usage.

Step 4: in your terminal type the following command, then it will go into tmux window

$ tmux

Step 5: Start jupyter notebook within your tmux session with the following command

$ jupyter notebook --no-browser

The –no-browser option prevents Jupyter from automatically opening a browser window.

Let this terminal stay running.

Step 6: from your laptop, ssh to your remote server (does not need port forwarding this time)

Step 7: cd to where the jupyter notebook script located that you would like to run from terminal

If you do not know what does cd mean and do, check my post for a list of commonly used Linux commands.

Step 8:  use the following command to run your ipynb script (this will save the output of each cell back to the notebook file)

$ runipy -o MyNotebook.ipynb 

To save the notebook output as a new notebook, run:

$ runipy MyNotebook.ipynb OutputNotebook.ipynb

If your ipynb script without any error itself, it should be running on the server now.

Step 9:  Things to pay attention to:

Do not close the terminal where you run the ipynb script within tmux session on your computer that you used to connect to the remote server, that will cause the termination of running the ipynb. But you can make your laptop in sleep or even shut down the computer, the tmux session will keep the ipynb running on your remote server and save the output in the ipynb.

References:

https://www.datasciencebytes.com/bytes/2015/12/18/using-jupyter-notebooks-securely-on-remote-linux-machines/ 

http://forums.fast.ai/t/ipython-notebook-on-a-remote-server-with-tmux/10044/2

Checking from command line if Jupyter server is running and kill if needed

This post provides instructions on how to check whether a Jupyter server is running from command line and kill if needed.

Normally, you can kill a Jupyter server from the same terminal window where you launched your Jupyter notebook by hit CTRL + C, then type yes, to shut down the kernels of Your jupyter notebook.

But, there are situations where you want to know whether a Jupyter-notebook running on your remote server, but the Jupyter notebook was started on another desktop (e.g., your office desktop), (and now you are working at home from your laptop, and want to check whether the notebook is still running).

After you login to your Server where you Jupyter notebook was installed and running, you can use the following command to list runing notebooks.

$ jupyter notebook list

You will see a list of running notebooks in the terminal, if you have several running ones.

You can use the following command to kill specific notebook (identified by the port it runs the jupyter) that you would like to stop.

$ jupyter notebook stop 8888

P.S.:

Each server should start on a new port. jupyter notebook list is reading a set of data files – each notebook server you run writes a file when it starts up, and attempts to remove it when it shuts down. If you see different listed servers on the same port, that means some of them exited without successful removal of the file when it created (for example, unexpected shut down of the notebook would cause this happens).

 

References:

https://github.com/jupyter/notebook/issues/1950

https://github.com/jupyter/notebook/issues/2844

 

 

Run Jupyter Notebook script from terminal

Normally people run jupyter notebook via browser, but in some situation, we will need to run it from terminal, for example, when running the script takes long time.

This post introduces how to run a jupyter notebook script from terminal.

Solution  I:

runipy can do this. runipy will run all cells in a notebook. If an error occurs, the process will stop.

  • Install  runipy package
$ pip3 install runipy # for python 3.x 
$ pip install runipy  # for python 2.x
  • runipy command-line usages

 

  • To run a .ipynb file as a script, run:
$ runipy MyNotebook.ipynb
  • To save the output of each cell back to the notebook file, run:
$ runipy -o MyNotebook.ipynb
  • To save the notebook output as a new notebook, run:
$ runipy MyNotebook.ipynb OutputNotebook.ipynb
  • To run a .ipynb file and generate an HTML report, run:
$ runipy MyNotebook.ipynb --html report.html

 

Solution  II:

The latest versions of jupyter comes with  the nbconvert command tool for notebook conversion allows us  to do this without any extra packages.

Just go to your terminal and type:

$ jupyter nbconvert --to notebook --execute mynotebook.ipynb --output mynotebook.ipynb

This will open the notebook, execute it, capture new output, and save the result in mynotebook.nbconvert.ipynb. By default, nbconvert will abort conversion if any exceptions occur during execution of a cell. If you specify --allow-errors (in addition to the --execute flag) then conversion will continue and the output from any exception will be included in the cell output.

if you meet this error,

raise exception(“Cell execution timed out”)

$ jupyter nbconvert --to notebook --execute --allow-errors --ExecutePreprocessor.timeout=180 mynotebook.ipynb 

You can use the –inplace flag as well:

$ jupyter nbconvert --to notebook --execute --inplace mynotebook.ipynb

 

check here for more (updated) usages about nbconvert jupyter command tool.

 

References:

https://pypi.python.org/pypi/runipy

http://nbconvert.readthedocs.io/en/latest/usage.html#convert-notebook 

Can I run Jupyter notebook cells in commandline?

 

 

 

 

[Python] get a list of sorted directories and/or files

This posts provides a piece of Python code to sort files, folders, and the combination of files and folders in a given directory. It works for Python 3.x. (It should work for Python 2.x, if you change the syntax of print statement to that of Python 2.x.)

Return the oldest and newest file(s), folder(s), or file(s) +folder(s) in a given directory and sort them by modified time.

import os

# change this as the parent directory name of the files you would like to sort

path = 'parent_directory_name'

if (os.path.isdir(path) and (not os.path.exists(path))):

   print("the directory does not exist")
else:
   os.chdir(path)

   # files varialbe contains all files and folders under the path directory

   files = sorted(os.listdir(os.getcwd()), key=os.path.getmtime)

   if len(files) == 0:

      print("there are no regular files or folders in the given directory!")

   else:

      #folder list

      directory_list = []

      #regular file list

      file_list = []

      for f in files:

          if (os.path.isdir(f)):

              directory_list.append(f)

      elif (os.path.isfile(f)):

          file_list.append(f)

      if len(directory_list) == 0:

         print("there are no folders in the given directory!")

    else:

        oldest_folder = directory_list[0]

        newest_folder = directory_list[-1]

        print("Oldest folder:", oldest_folder)

        print("Newest folder:", newest_folder)

        print("All folders sorted by modified time -- oldest to newest:", directory_list) 

    if len(file_list) == 0:

        print("there are no (regular) files in the given directory!")

    else:

        oldest_file = file_list[0]

        newest_file = file_list[-1]

        print("Oldest file:", oldest_file)

        print("Newest file:", newest_file)

        print("All (regular) files sorted by modified time -- oldest to newest:", file_list)

    if len(file_list) > 0 and len(directory_list) > 0:

        oldest = files[0]

        newest = files[-1]

        print("Oldest (file/folder):", oldest)

        print("Newest (file/folder):", newest)

        print("All (file/folder) sorted by modified time -- oldest to newest:", files)

See below for a pic of the code.

Saving IPython/Jupyter notebook as PDF on Ubuntu

When you would like to save your Jupyter notebook as a PDF file, and you encouter the following problems on Ubuntu OS. This post is for you.

The solution:

XeLatex is a part of texlive-xetex package.

To install on Ubuntu, run the following command: 

$ sudo apt-get install texlive-xetex

Now you can download  your ipynb file as PDF!

Install and use htop on Ubuntu 16.04 Desktop and Server

This post introduces an interactive tool for visually monitoring the memory and process usages of your Ubuntu 16.04 Desktop or Server in real time.

  • What is Htop?

Htop is an interactive system-monitor process-viewer and process-manager. It is designed as an alternative to the Unix program top. It shows a frequently updated list of the processes running on a computer, normally ordered by the amount of CPU usage. Unlike top, htop provides a full list of processes running, instead of the top resource-consuming processes. Htop uses color and gives visual information about processor, swap and memory status.

  • Install Htop on Ubuntu 16.04 LTS Desktop and Server

(This works on both an Ubuntu 16.04 Desktop and  Server.)

Installing htop package on Ubuntu 16.04 (Xenial Xerus) is as easy as running the following command on terminal:

Step 1. First make sure that all your system packages are up-to-date by running these following apt-get commands in the terminal.

$ sudo apt-get update

Step 2. Installing Htop. Install htop process monitoring tool using apt-get command:

$ sudo apt-get install htop
  • Use Htop to monitor your Ubuntu 16.04 LTS Desktop and Server in real-time

Now that htop is installed on your server you’ll want to start the program by running the following in a command prompt:

$ htop

This will open the program and you’ll see something similar to the following:

Leave this terminal open, you can use CTRL + ALT + T  to open another new terminal for your other work. Then htop will help you monitor your memory usage in real-time:)  Enjoy!